

Ron Kwok

Jet Propulsion Laboratory California Institute of Technology Mar 25-26, 2008 ICESat Science Team Meeting

Snow depth, Ice Thickness, and Freeboard

Freeboard, Snow Depth and Ice Thickness

Ice Volume - Interannual Comparison Oct/Nov, Feb/Mar 2006 and 2007

0.37 m

10626 km³ 13891 km³

Production - export = 3265 km³ 0.43 m

Arctic Ocean ice thickness: Correspondence with MY ice fraction from QuikSCAT

Sea Ice Thickness: ON05 and FM06

Mooring A - ice draft comparisons

WHOI mooring ice draft data provided by R. Krishfield.

3/26/08 RK

(Kwok, 2007)

Mooring C - ice draft comparisons

Decline in Arctic Ocean Multiyear Sea Ice Coverage

Summary Remarks

- Snow depth
 - Provided daily fields of snow depth to GSFC, NOAA and UCL for assessment.
 - Comparison of snow depth with freeboard differences between ICESat and Envisat looks promising.
 - We have identified a source of ECMWF snowfall that we can access in close to real-time (weeks) for quick assessment of ICESat sea ice thickness this year.
- Recommend change in fall turn-on date

• Recommend shift in laser turn-on date to later in the fall (end of Oct) compared to last year

 Coverage of the surface is not adequate due to warm atmosphere/clouds/moisture.

Deconvolution of waveforms with Wiener Filter

$$W(f) = \Phi(f) \frac{S_r(f)}{S_t(f)}$$
 W(f) - surface spreading of Transmitted waveform

$$\Phi(f) = \frac{|S_r(f)|^2}{|S_r(f)|^2 + \sigma_N^2}$$

Waveform deconvolution to separate surface targets

/u/rgps3r2/results/deconv/pdf/002_0323_TRD.pdf

13

Waveform deconvolution to separate surface targets

/u/rgps3r2/results/deconv/pdf/002_0323_TRD.pdf

3/2

14

Received vs deconvolved waveforms: examples - double peaks

Received vs deconvolved waveforms: examples

Received Waveform

Decovolved Waveform

Peak-to-peak range delay

Spatial density, delay of double peaks

Feb-Mar 07 (Laser 3h)

→ Retrieved freeboard vs Peak-to-peak distance

→ Retrieved freeboard vs Peak-to-peak distance

Feb-Mar 07 (Laser 3h)

Spatial density, delay of double peaks Oct-Nov 05 (Laser 3d)

Units: 15 cm samples

→ Retrieved freeboard vs Peak-to-peak distance

Oct-Nov 05 (Laser 3d)

→ Retrieved freeboard vs Peak-to-peak distance

Feb-Mar 04 (Laser 3b)

Conclusions

- •Use of simple deconvolution to resolve surface response.
 - Resolve multiple peaks that are close together in range.
 - Perhaps process waveforms before range tracking.
- Correspondence between freeboard and double-peak delay.
- •Better understand quality of ICESat freeboard.
- •Look at:
 - Roughness
 - Ridges

IPY In-situ and other observations

- Assessment of Sea Ice Thickness Estimates Obtained from Satellites Using Submarines and Other In Situ Observations (Co-I)
 - •(Ignatius Rigor, UW; Mark Wensnahan, UW; R. Kwok, JPL; J. Zwally, GSFC)